Consultancy

http://www.educationvision.co.uk
http://www.educationvision.co.uk

www.educationvision.co.uk ation

< “Learners we can all be proud of.”
k<)
w

L.
5.
°

=]

Consultancy

A discussion of sorting algorithms

Firstly the operation of the different algorithms is examined, then their
relative performance is discussed.

This article has been translated into Serbo-Croatian by Jovana Milutinovich from
Geeks Education.

Introduction

I grew up with the bubble sort, in common, I am sure, with many colleagues. Having
learnt one sorting algorithm, there seemed little point in learning any others, it was
hardly an exciting area of study. Mundane sorting may be, but it is also central to
many tasks carried out on computer. Prompted by its inclusion in the AEB 'A’ level
syllabus, I looked at the process again in detail. The efficiency with which sorting is
carried out will often have a significant impact on the overall efficiency of a program.
Consequently there has been much research and it is interesting to see the range of
alternative algorithms that have been developed.

It is not always possible to say that one algorithm is better than another, as relative
performance can vary depending on the type of data being sorted. In some situations,
most of the data are in the correct order, with only a few items needing to be sorted.
In other situations the data are completely mixed up in a random order and in others
the data will tend to be in reverse order. Different algorithms will perform differently
according to the data being sorted. Four common algorithms are the exchange or
bubble sort, the selection sort, the insertion sort and the quick sort.

The selection sort is a good one to use with students. It is intuitive and very simple to
program. It offers quite good performance, its particular strength being the small
number of exchanges needed. For a given number of data items, the selection sort
always goes through a set number of comparisons and exchanges, so its performance
is predictable.

procedure SelectionSort (d: DataArrayType; n: integer)
{n is the number of elements}

for k = 1 to n-1 do

begin
small = k
for j = k+1 tondo

ifd[j] < d[small] then small = j
{Swap elements k and small}

Swap(d, k, small)
end

http://www.educationvision.co.uk

www.educationvision.co.uk ation

< “Learners we can all be proud of.”
k<)
w

L.
s
°

=]

Consultancy

Exchange (Bubble) Sort

Element 1 2 3 4 5 6 7 8

Data 27| 63| 1| 72| 64 58 14 9
1st pass 27, 1 63 64 58 14 9 72
2"d pass 1 27| 63| 58 14 9 64 72
3 pass... 1 27| 58/ 14| 9 63 64 72

The first two data items (27 and 63) are compared and the smaller one placed on the
left hand side. The second and third items (63 and 1) are then compared and the
smaller one placed on the left and so on. After all the data has been passed through
once, the largest data item (72) will have "bubbled" through to the end of the list. At
the end of the second pass, the second largest data item (64) will be in the second
last position. For n data items, the process continues for n-1 passes, or until no
exchanges are made in a single pass.

Insertion Sort

Element 1 2 3 4 5 6 7 8

Data 27, 63 72 64 58 14, 9
1st pass 27| 63 72] 64, 58/ 9 14
720 64, 9 14 58
72 9 14/ 58 64

2" pass 27| 63

-_— | e [e | -

3dpass...| 27| 63

The insertion sort starts with the last two elements and creates a correctly sorted
sub-list, which in the example contains 9 and 14. It then looks at the next element
(58) and inserts it into the sub-list in its correct position. It takes the next element
(64) and does the same, continuing until the sub-list contains all the data.

http://www.educationvision.co.uk

www.educationvision.co.uk ation

< “Learners we can all be proud of.”
k<)
w

L.
s
°

=]

Consultancy

Selection Sort

Element 1 2 3 4 5 6 7 8

Data 27| 63 1 72 64 58 14/ 9
1st pass 1 63 27| 72| 64 58 14 9
2" pass 1 9 27| 72| 64| 58 14/ 63
3 pass... 1 9 14| 72| 64 58 27 62

The selection sort marks the first element (27). It then goes through the remaining
data to find the smallest number (1). It swaps this with the first element and the
smallest element is now in its correct position. It then marks the second element (63)
and looks through the remaining data for the next smallest number (9). These two
numbers are then swapped. This process continues until n-1 passes have been made.

Quick Sort

Element 1 2 3 4 5 6 7 8
Data 27| 63 1 72| 64/ 58 14 9
1st pass 1 9 63 72 64/ 58 14| 27
2nd pass 1 9 14/ 27| 64/ 58 72| 63
31 pass 1 9 14, 27| 58 63 72| 64
4 pass 1 9| 14| 27| 58| 63| 64| 72
sorted!

The quick sort takes the last element (9) and places it such that all the numbers in
the left sub-list are smaller and all the numbers in the right sub-list are bigger. It
then quick sorts the left sub-list ({1}) and then quick sorts the right sub-list
({63,72,64,58,14,27}). This is a recursive algorithm, since it is defined in terms of
itself. This reduces the complexity of programming it, however it is the least intuitive
of the four algorithms.

Comparing the Algorithms

There are two important factors when measuring the performance of a sorting
algorithm. The algorithms have to compare the magnitude of different elements and
they have to move the different elements around. So counting the number of
comparisons and the number of exchanges or moves made by an algorithm offer
useful performance measures. When sorting large record structures, the number of
exchanges made may be the principal performance criterion, since exchanging two
records will involve a lot of work. When sorting a simple array of integers, then the
number of comparisons will be more important.

http://www.educationvision.co.uk

www.educationvision.co.uk ation

< “Learners we can all be proud of.”
k<)
w

L.
5.
°

=]

Consultancy

It has been said that the only thing going for the bubble (exchange) sort is its catchy
name. The logic of the algorithm is simple to understand and it is fairly easy to
program. It can also be programmed to detect when it has finished sorting. The
selection sort, by comparison, always goes through the same amount of work
regardless of the data and the quick sort performs particularly badly with ordered
data. However, in general the bubble sort is a very inefficient algorithm.

The insertion sort is a little better and whilst it cannot detect that it has finished
sorting, the logic of the algorithm means that it comes to a rapid conclusion when
dealing with sorted data.

The selection sort is a good one to use with students. It is intuitive and very simple to
program. It offers quite good performance, its particular strength being the small
number of exchanges needed. For a given number of data items, the selection sort
always goes through a set number of comparisons and exchanges, so its performance
is predictable.

The first three algorithms all offer O(n2) performance, that is sorting times increase
with the square of the number of elements being sorted. That means that if you
double the number of elements being sorted, then there will be a four-fold increase in
the time taken. Ten times more elements increases the time taken by a factor of 100!
This is not a problem with small data sets, but with hundreds or thousands of
elements, this becomes very significant. With most large data sets, the quick sort is a
vastly superior algorithm (although as you might expect, it is much more complex),
as the table below shows.

Random Data Set: Number of comparisons made

Sort/Elements 50 100 200 300 400 500

Selection sort 1225 4950 19900/ 44850 79800 124750
Exchange sort 1410 5335/ 20300/ 45650 79866/ 126585
Insertion sort 1391 5399 20473| 44449 78799 123715
Quick sort 339 990, 1954, 3384 5066 6256

It should be pointed out that the methods above all belong to one family, they are all
internal sorting algorithms. This means that they can only be used when the entire
data structure to be sorted can be held in the computer's main memory. There will be
situations where this is not possible, for example when sorting a very large
transaction file which is stored on, say, magnetic tape or disc. Then an external
sorting algorithm will be needed.

http://www.educationvision.co.uk

www.educationvision.co.uk ation

< “Learners we can all be proud of.”
k<)
w

L
5.
°

=]

Consultancy

Sorting for Teachers

Sorting for Teachers is a program that allows students to step through the four
algorithms mentioned above. It shows them how different data sets would be sorted,
by highlighting the appropriate lines of the algorithm and displaying the variable

values, as they progress through it.
Sorting

e Software link: Sorting for Teachers @D

Reference

Data Structures with Abstract Data Types and Pascal by Stubbs and Webre,
pub. Brooks/Cole

A discussion of sorting algorithms by Mark C Baker is licensed under a Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Based on a work at http://atschool.eduweb.co.uk/mbaker/evc/evcmaterialsorting.pdf.

Permissions beyond the scope of this license may be available at
http://educationvision.co.uk.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_GB
http://educationvision.co.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_GB
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_GB
http://atschool.eduweb.co.uk/mbaker/evc/evcmaterialsorting.pdf
http://educationvision.co.uk/
http://atschool.eduweb.co.uk/mbaker/index.html#sort-w
http://atschool.eduweb.co.uk/mbaker/index.html#sort-w
http://www.educationvision.co.uk

